SCHEME OF COURSE WORK

Course Details:

Course Title	: Special Electrical Machines For Industrial Applications							
Course Code	:15EE1141	L T P C : 3003						
Program:	: B. Tech.							
Specialization:	Information Technology							
Semester	: VIII SEM							
Prerequisites	: Knowledge of Mathematics, Electric Networks and Electrical Machines.							
Courses to which it is a prerequisite :								

Course Outcomes (COs): At the end of the course students will be able to:

1	Evaluate the Performance of Stepper Motor.
2	Evaluate the Performance of Switched Reluctance Motor.
3	Evaluate the Performance of Permanents Magnet Brushless DC Motor.
4	Evaluate the Performance of Permanents Magnet Synchronous Motors.
5	Evaluate the Performance of Servo Motor

Program Outcomes (POs): The graduate of Electrical and Electronics Engineering will be able to:

1	Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals							
	to solve the problems of power systems and drives.							
2	Analyze power systems that efficiently generate, transmit and distribute electrical power in the							
	context of present Information and Communications Technology.							
3	Design and develop electrical machines and associated controls with due considerations to							
	societal and environmental issues.							
4	Design and conduct experiments, analyze and interpret experimental data for performance							
	analysis.							
5	Apply appropriate simulation tools for modeling and evaluation of electrical systems.							
6	Apply the electrical engineering knowledge to assess the health and safety issues and their							
	consequences.							
7	Demonstrate electrical engineering principles for creating solutions for sustainable							
	development.							
8	Develop a techno ethical personality that help to serve the people in general and Electrical and							
	Electronics Engineering in particular.							
9	Develop leadership skills and work effectively in a team to achieve project objectives.							
10	Communicate effectively in both verbal and written form.							
11	Understand the principles of management and finance to manage project in multi disciplinary							
	environments.							
12	Pursue life-long learning as a means of enhancing the knowledge and skills.							
urse	e Outcome versus Program Outcomes:							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO-1	5	2	3	2	2	2	3	2							
CO-2	5	2	3	2	2	2	3	2							
CO-3	-	2	3	2	2	2	3	2							
CO-4	•	2	3	2	2	2	3	2							
CO-5															
	3	2	3	2	2	2	3	2							

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outco mes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Unit-I Stepper Motors Stepper motor Constructional features, Principle of operation.	CO1	 Explain the constructional details and working of stepper motor with neat sketch. 	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 1)
2	Special features of stepper motors, Variable reluctance, Permanent magnet stepping motor.	CO1	1. Explain the different types of stepper motor?	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 2)
3	Torque versus stepping rate characteristics.	CO1	1. Explain the torque and speed characteristics of stepper motor?	 Lecture Discussion Problem solving 	Mid-Test 1 (Week 8) Seminar (Week 3)
4	Unit-II Switched Reluctance Motors Switched Reluctance Motor Constructional features.	CO2	1. Explain the constructional details and working of switched reluctance motor with neat sketch.	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 4)
5	Principle of operation, Torque equation, Characteristics.	CO2	 Derive the expression for torque of the switched reluctance motor? Explain the performance characteristics of switched reluctance motor? 	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 5)
6	Control Techniques, and Drive Concept	CO2	 Explain the basic drive concept of switched reluctance motor? Explain different control strategies of switched reluctance motor? 	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week 6)
7	Unit-IIIPermanentMagnetBrushless Dc (PMBLDC)MotorsCommutationinDCDifferencebetween mechanical andelectronic Commutators.	CO3	1. Distinguish between the mechanical and electronic Commutators.	 Lecture Discussion Problem Solving 	Mid-Test 1 (Week 8) Seminar (Week-7)
8			UNIT I, II AND HALF PAT IN III.		
9	Torque and emf equation, Rotor position sensors.	CO3	 Derive the Torque and emf equations of the PMBL DC Motor? What are the different types of Rotor position sensors and explain? 	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-9)
10	Multiphase Brushless motor, Square wave permanent magnet brushless motor drives.	CO3	 Explain the different types of PM brushes less DC motors? Explain the concept of square wave PM brushless motor drive? 	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-10)
11	Torque-speed characteristics.	CO3	1. Explain the torque and speed characteristics of PMBL DC motor?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-11)
12	Unit-IV Permanent Magnet Synchronous Motors(PMSM) Principle of operation, EMF, power input and torque expressions,	CO4	 Explain the principle of operation of PMSM? Derive the emf and Torque equations of PMSM? 	 Lecture Discussion Problem solving 	Mid-Test (Week 17) Seminar (Week-17)

13	Phasor diagram, Power Controllers, Torque speed characteristics.	CO4	 Draw and explain the Phasor diagram of PMSM? Explain the different types of power controllers for PMSM? Draw and explain the Torque and speed characteristics of PMSM? 	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminary (Week-13)
14	UNIT-V SERVOMOTORS Servomotor, Constructional features, Principle of Operation,	CO5	 Explain the constructional details and working principle of servomotors with neat sketch? What are the special features of the servo motors? 	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-14)
15	Types, Characteristics, Control strategies.	CO5	 What are the different types of servo motor and explain? Draw and explain the performance characteristics of servomotor? 	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-15)
16	AC tachometers Operating principle, Schematic diagram.	CO5	1. Explain the construction and working principle of AC tachometer with neat sketch?	 Lecture Discussion Problem Solving 	Mid-Test (Week 17) Seminar (Week-16)
17.	Mid-Test 2		HALF PART III UNIT, IV, V UNITS.		
18.	Preparation and Practical Examination				
19,20	END EXAM		UNIT I, II, III, IV, V.		Assessment will be on all topics at END EXAM

pdfelement